

SLEPc: Scalable Library for Eigenvalue Problem Computations

Jose E. Roman

Departamento de Sistemas Informaticos y Computacion Universidad Politecnica de Valencia (Spain)

jroman@dsic.upv.es

Problem Definition

- Target problems
 - Large sparse eigenvalue problems
 - Example: discretization of PDEs
- Types of problems
 - Standard: $Ax = \lambda x$
 - Generalized: Ax=λBx
 - Other (SVD, quadratic, ...) formulated as one of the above
- Methods
 - "Direct" methods (QR, Jacobi, etc.) are not appropriate
 - Vector iterations
 - Single vector iterations (power, inverse iteration, RQI)
 - Multiple vector iterations (subspace iteration, block RQI)
 - Projection methods (Arnoldi, Lanczos, Jacobi-Davidson)
 - Acceleration techniques: spectral transformations

Acceleration

- Convergence rate is critical for good performance
 - Clustered eigenvalues are a problem
 - Acceleration techniques usually aim at improving separation
- Polynomial filtering
 - Chebychev, least-squares and other polynomials
 - The optimal polynomial is difficult to obtain
- Spectral transformations
 - Origin shift: improvement is very limited
 - Shift-and-invert:
 - Very effective technique, widely used
 - Also allows to find internal eigenvalues
 - More general transforms: Cayley, rational
 - Can be combined with any solution method

 $(A-\sigma I)^{-1}x=\mu x$

 $(A-\sigma B)^{-1}Bx=\mu x$

Available Software

- Parallel eigenvalue solvers
 - PARPACK (Sorensen, Lehoucq et al)
 - Implicitly Restarted Arnoldi/Lanczos method
 - Symmetric and nonsymmetric
 - Real and complex problems
 - BLZPACK (Marques)
 - Block Lanczos method
 - For complex problems use HLZPACK
 - PLANSO (Parlett/Wu and Simon)
 - Lanczos with partial reorthogonalization
 - TRLAN (Wu and Simon)
 - Dynamic thick-restart Lanczos algorithm
- Linear systems of equations
 - Direct methods: SuperLU, PSPASES, SPOOLES, (PETSc)
 - Iterative methods: PETSc, Aztec, PIM, Isis++, ...

SLEPc Objectives

Current situation

- Software for eigenvalue problems available
- Traditional programming model (Fortran, reverse communication, etc)
- User has to be aware of details of parallelism
- Usually has to be combined with software for the solution of linear systems of equations

With SLEPc

- More modern programming paradigm
 - Object oriented
 - Built-in programming tools: debugging, visualization, etc.
 - Details of parallelism hidden in lower abstraction levels
- Very easy to implement an eigensolver
 - The user still has control over all the details of solution method
- All the functionality of PETSc available

What is SLEPc?

- SLEPc: Scalable Library for Eigenvalue Problem Computations
- A new library
 - Aim: solution of large scale sparse eigenvalue problems
 - Can be considered an extension of PETSc
 - Developed by HPNC group in Valencia (Spain)
- Properties
 - Freely available (and supported) research code
 - Hyperlinked documentation and manual pages for all routines
 - Many tutorial-style examples
 - (Support via email)
 - Usable from Fortran 77/90, C, and C++
 - Portable to any parallel system supporting MPI
 - Good parallel performance
 - Extensible
 - ... the same way as PETSc

Numerical Components

PETSc

SLEPc

Nonlinear Solvers					
Newton-bas	Newton-based Methods Other				
Line Search	0 11101				

Time Steppers					
Euler	Backward Euler	Pseudo Time Stepping	Other		

Eigensolvers					
Power RQI SI Arnoldi					
Lanczos	Arpack	Blzpack	Other		

Krylov Subspace Methods							
GMRES	CG	CGS	Bi-CG-STAB	TFQMR	Richardson	Chebychev	Other

Spectral Transform				
Shift	Shift-and-invert	Other		

Preconditioners						
Additive Schwartz	Block Jacobi	Jacobi	ILU	ICC	LU (Sequential only)	Others

Matrices					
Compressed	Blocked Compressed	Block			
Sparse Row	Sparse Row	Diagonal	Dense	Other	
(AIJ)	(BAIJ)	(BDIAG)			

Vectors

Index Sets					
Indices	Block Indices	Stride	Other		

SLEPc objects (1)

EPS: Eigenvalue Problem Solver

- Solvers for
 - Standard and generalized
 - Real and complex arithmetic
 - Hermitian and non-Hermitian
- Main functions
 - EPSCreate, EPSDestroy, EPSView, EPSSetOperators,
 EPSSetInitialVector, EPSSetUp, EPSSolve
- The user can
 - Select a solver
 - Specify various parameters:
 - nev: number of eigenvalues
 - ncv: dimension of the subspace (number of basis vectors)
 - tolerance, max iterations, portion of the spectrum
 - orthogonalization technique (CGS, MGS, IR, DGKS, other)
 - whether to compute eigenvectors or not
 - Via procedural or command line interface

SLEPc objects (2)

ST: Spectral Transformation

- How it works
 - Solvers apply the "operator" to a vector
 - The "operator" is different depending on the type of ST
 - Linear systems are handled via a SLES object

	Standard	Generalized
none	A	B-1A
shift	A+σI	B-1A+σI
sinvert	(A-σI) ⁻¹	$(A-\sigma B)^{-1}B$

- After convergence, eigenvalues
 have to be transformed back appropriately
- Main functions
 - STCreate, STDestroy, STView, STSetUp, STApply
- The user can
 - Select the type of transformation
 - Type shell also available for user-defined transformations
 - Specify various parameters: the value of the shift (σ)
 - In sinvert also the linear system solver and corresponding options

Basic Eigensolver Code

```
/* eigensolver context */
EPS
    eps;
               /* matrix */
Mat A;
Vec *x; /* basis vectors */
Scalar *kr,*ki; /* eigenvalues */
MatCreate(MPI COMM WORLD, n, n, N, N, &A);
MatSetFromOptions(A);
/* assemble matrix */
EPSCreate(MPI COMM WORLD, &eps);
EPSSetOperators(eps,A,PETSC NULL);
EPSSetFromOptions(eps);
EPSSolve(eps,&its);
EPSGetConverged(eps,&nconv);
EPSGetSolution(eps,&kr,&ki,&x);
EPSComputeError(eps,error);
```

Power Method

• power

- Power method
- Deflation for computing more than one eigenpair
- Combined with shift-and-invert is equivalent to inverse iteration

• rqi

- Rayleigh Quotient Iteration
- Only implemented for one eigenpair

Examples

```
ex1 -eps_type power -eps_tol le-8 -eps_monitor
ex1 -eps_type power -eps_nev 6
ex1 -eps_type power -st_type shift -st_shift 0.5
ex1 -eps_type power -st_type sinvert -st_shift 2000
ex1 -eps_type rqi -eps_monitor_values
```


Subspace Iteration

• subspace

- Subspace Iteration method
- Non-Hermitian projection
- Deflation by locking converged eigenpairs

Examples

```
ex1 -eps_type subspace -eps_nev 1 -eps_ncv 12
ex1 -eps_type subspace -eps_mgs_orthog
ex1 -eps_type subspace -eps_plot_eigs -draw_pause 10
ex1 -eps_type subspace -st_type sinvert -st_shift 1
    -sinv_ksp_type gmres -sinv_pc_type sor
    -sinv_pc_sor_omega 1.2
ex1 -eps_type subspace -none_ksp_type cg
    -none_pc_type jacobi -none_ksp_tol 1e-5
ex1 -eps_type subspace -eps_view
```


Arnoldi, Lanczos and Wrappers

• arnoldi

- Arnoldi method
- Explicit restart and deflation

• lanczos

- (Hermitian) Lanczos method
- Full reorthogonalization

Wrappers

- arpack, blzpack, planso, trlan
- Specific options for some of them,e.g. -eps_blzpack_block_size
- Also lapack for validation purposes
- When installing SLEPc the user specifies which of this packages are available

Examples

Catego	Category Filename Description					
1	ex1.c	1-D Laplacian, standard symmetric eigenproblem				
3	ex1f.F	Fortran equivalent of ex1.c				
1	ex2.c	2-D Laplacian, standard symmetric eigenproblem				
4	ex3.c	2-D Laplacian, matrix-free version				
1	ex4.c	Matrix loaded from a file, standard problem				
1	ex5.c	Markov model of a random walk in a triangular grid				
9	ex6f.F	Ising model for ferromagnetic materials				
1	ex7.c	Matrices loaded from a file, generalized problem				
6	ex8.c	Grcar matrix, Singular Value Decomposition				
1	ex9.c	Brusselator model, standard nonsymetric w/blocks				

Also tests with NEP collection (math.nist.gov/MatrixMarket)

The Future

- First version:
 - Will probably be released in Nov or Dec 2001
 - Version numbering will probably be consistent with PETSc
 - Therefore: SLEPc 2.1.0
 - Will contain
 - Power, Subspace iteration, RQI, Arnoldi, Lanczos
 - Also wrappers to Arpack, Blzpack, Planso, Trlan, Lapack
 - Shift and shift-and-invert spectral transformations
- What is next?
 - Close collaboration with PETSc team
 - More methods (Non-Hermitial Lanczos, Jacobi-Davidson, ...)
 - Other spectral transformations or acceleration techniques
 - Further testing with several case studies
- Open to external collaboration
 - Researchers who want to experiment with new methods
 - Users with interesting applications

Lambda Modes

- Nuclear reactor analysis
- The Lambda Modes equation
- Modeling the reactor
- Solution strategy
- Implementation with SLEPc
- Preliminary performance results

Introduction

- Context: Security analysis in nuclear reactors
 - The main aim is to improve security
 - Also reduction of production costs can be pursued
 - Engineering companies demand tools for detailed analysis
 - This analysis has evolved to 3D methodologies

- Lambda Modes analysis
 - eigenvalues and eigenvectors of time-independent neutron diffusion equation of a nuclear reactor

Criticality

Criticality: depends on how many of the free neutrons from each fission, on average, hits another U-235 nucleus and causes it to split:

- Exactly one: the mass is critical
 - The mass will exist at a stable temperature
- Less than one: the mass is subcritical
 - Eventually, induced fission will end in the mass
- More than one: the mass is supercritical
 - It will heat up
 - In a nuclear reactor, the reactor core needs to be slightly supercritical so that plant operators can raise and lower the temperature of the reactor
 - The control rods give the operators a way to absorb free neutrons so that the reactor can be maintained at a critical level

The Physical Problem

- Lambda Modes equation
 - Derived from time-independent neutron diffusion equation
 - Multigroup approach: neutrons are grouped in energy intervals. With two energy groups (fast and thermal):

$$L\phi_{i} = \frac{1}{\lambda_{i}} M\phi_{i}$$

$$L = \begin{bmatrix} -\nabla(D_{1}\nabla) + \Sigma_{a1} + \Sigma_{12} & 0\\ -\Sigma_{12} & -\nabla(D_{2}\nabla) + \Sigma_{a2} \end{bmatrix}$$

$$M = \begin{bmatrix} v_{1}\Sigma_{f1} & v_{2}\Sigma_{f2}\\ 0 & 0 \end{bmatrix} \qquad \phi_{i} = \begin{bmatrix} \phi_{f_{i}}\\ \phi_{t_{i}} \end{bmatrix}$$

The Algebraic Problem

Discretization: Nodal Collocation, with Legendre polynomials

$$L\psi_{i} = \frac{1}{\lambda_{i}} M\psi_{i}$$

$$\begin{bmatrix} L_{11} & 0 \\ -L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} \psi_{1_{i}} \\ \psi_{2_{i}} \end{bmatrix} = \frac{1}{\lambda_{i}} \begin{bmatrix} M_{11} & M_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \psi_{1_{i}} \\ \psi_{2_{i}} \end{bmatrix}$$

Reduced size eigenproblem

$$A \psi_{1_i} = \lambda_i \psi_{1_i}$$

$$A = L_{11}^{-1} (M_{11} + M_{12} L_{22}^{-1} L_{21})$$

Nodalization

2D Case

All axial planes are considered equal

1/4 symmetry

3D Case

Different axial planes

No symmetries

Other details such as control rods

Control Rods

Bank	No. of rods	Purpose
1	8	Security
2	8	Security
3	8	Security
4	8	Security
5	12	Regulation
6	12	Regulation
7	9	Regulation
8	8	APSR

The user can specify the position of each control rod bank (e.g. bank 7 inserted 20%)

Analysis of Results

- Physical interpretation of results
 - Eigenvalues inform about criticality of the reactor
 - Eigenvectors inform about distribution of power density

normal conditions

abnormal conditions

Nonzero Pattern (2D)

 $L_{11},\,L_{22}$: symmetric matrices, (almost always) positive definite $M_{11},\,M_{12},\,L_{21}$: diagonal matrices

Solution Strategy

- Large eigenvalue problem
 - Size in 3D models range from 50000 to 1 million depending on degree of polynomial
 - "Sparse" methods are preferred
- Several approaches
 - Full eigensystem
 - Reduced generalized eigensystem
 - Reduced standard eigensystem
- $A \psi_{1_i} = \lambda_i \psi_{1_i}$ $A = L_{11}^{-1} (M_{11} + M_{12} L_{22}^{-1} L_{21})$

 In the latter case, matrix vector products are done without forming the matrix explicitly

$$W_1=M_{11}X$$

 $W_2=L_{21}X$
 $Solve\ L_{22}W_3=W_2$
 $W_4=W_1+M_{12}W_3$
 $Solve\ L_{11}y=W_4$

Main Program

```
#include "slepceps.h"
int main(int argc,char** argv)
  SlepcInitialize(&argc,&argv,(char*)0,help);
  LambdaGetOptions(&reac,&dpol);
 MatLambdaCreate(reac,dpol,&A);
  EPSCreate(comm, &eps);
  EPSSetOperators(eps,A,PETSC NULL);
  EPSSetFromOptions(eps);
  EPSSolve(eps,&its);
  EPSGetConverged(eps,&nconv);
  EPSGetSolution(eps,&kr,&ki,&x);
  EPSComputeError(eps,error);
 MatDestroy(A);
  EPSDestroy(eps);
  SlepcFinalize();
```


Matrix Generation

```
typedef struct {
             L11, L22;
  SLES
             w, L21, M11, M12;
  Vec
} CTX LAMBDA;
int MatLambdaCreate(Reactor reac,int dpol,Mat *A)
  CTX LAMBDA
                  *ctx;
  /* generate M with appropriate ordering */
  SLESCreate(comm, &ctx->L11);
  SLESSetOperators(ctx->L11, M, M, flag);
  SLESGetKSP(ctx->L11,&ksp);CHKERRQ(ierr);
                                                  Repeated
  KSPSetType(ksp,KSPCG); CHKERRQ(ierr);
                                                  for I 22
  SLESGetPC(ctx->L11,&pc);CHKERRQ(ierr);
  PCSetType(pc,PCJACOBI);CHKERRQ(ierr);
  SLESSetFromOptions(ctx->L11); CHKERRQ(ierr);
  MatCreateShell( comm, n, n, N, N, (void*)ctx, A );
  MatShellSetOperation(*A,MATOP MULT,MatLambda Mult);
```

Matrix-vector Product

```
int MatLambda Mult( Mat A, Vec x, Vec y )
 CTX LAMBDA *ctx;
  int its, ierr;
 Scalar done = 1.0;
 MatShellGetContext( A, (void**)&ctx );
 VecPointwiseMult( ctx->L21, x, ctx->w );
 SLESSolve(ctx->L22, ctx->w, y, &its);
 VecPointwiseMult( ctx->M12, y, ctx->w );
 VecPointwiseMult( ctx->M11, x, y );
 VecAXPY( &done, y, ctx->w );
 SLESSolve( ctx->L11, ctx->w, y, &its );
 PetscFunctionReturn(0);
```


Preliminary Performance Results

- Timings in a SGI Origin 2100 system (8 proc)
- No renumbering of nodes
- Block size n=83376

p	T_p	S_p	E _p (%)
1	218.64	1.00	100
2	147.43	1.48	74
4	58.40	3.47	94
6	46.45	4.71	78

• Block size n=208440

p	T_p	S_p	$E_{p}(\%)$
1	1464.44	1.00	100
2	905.71	1.62	81
4	479.87	3.05	76
6	327.28	4.47	75